抽签的先后顺序是否影响中奖概率?
另一人还是有机会抽中有物签。先抽抽到有物签概率为2/5;后抽抽到有物签概率:若先抽抽到有物签则有1/4,若先抽抽到白签,有1/2。所以,在抽签中,先抽后抽都是一样的,与抽签的顺序无关。
要确保第二个人中签,他一共有m种抽法。而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
按照老师的算法,每个人抽到“上上签”的概率都是1/如果第一个人告诉了第二个人没有抽到上上签,实质是第二个人在五个签中抽得唯一上上签,若概率当然就应该是1/而不是因为记忆的改变而影响了结果。
通过上面的计算可知,抽签的顺序与中奖概率之间并没有关系,不管先抽还是后抽,总体中奖概率都是相等的,可见抽签十分公平。在工作和生活之中,我们还会遇到一类和抽签很像的事情,但这类问题与抽签问题并不相同。
如果前一个翻牌转到后一个,就没有翻牌的机会了,所以按顺序抽签会有影响。
于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。
抽签时先抽和后抽中签的几率是多少?
概率相同,但是掌握在谁手里不一定。极端的例子,两个人,抽两个签。只要第一个人抽完了,后一个人也就确定了不用抽了,两个人的概率都是1/2。
证明:因为即使第一个抽的抽到有物签,另一人还是有机会抽中有物签。先抽抽到有物签概率为2/5;后抽抽到有物签概率:若先抽抽到有物签则有1/4,若先抽抽到白签,有1/2。
假如10个人抽签,只有1个奖品。
按甲、乙、丙顺序抽 如果甲抽到了“无”,那么抽签就直接结束了 题目说乙抽到了“有”,那么意思就是乙参与了抽签,那么一定是甲抽到了“有”的前提下。
抽签是我们在工作和生活中经常会遇到的一个问题,比如买房子要抽签、公司年会要抽奖、街头促销要抽签、就连家务劳动洗完拖地,有的时候也要抽签,而只要抽签就涉及到了一个问题,那就是先抽还是后抽。
于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。
抽签时先抽和后抽的中签机会均等吗?
证明:因为即使第一个抽的抽到有物签,另一人还是有机会抽中有物签。先抽抽到有物签概率为2/5;后抽抽到有物签概率:若先抽抽到有物签则有1/4,若先抽抽到白签,有1/2。
抽签是很公平的,没有先后之分,因为这是随机抽样,每个人的概率都是一样的。
最后是D,按照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/4。抽签优缺点 抽签法又称“抓阄法”,它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。
抽签时先抽和后抽概率一样吗
最后是D,按照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/4。抽签优缺点 抽签法又称“抓阄法”,它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。
其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
抽签时先抽和后抽中签的几率是均等的。不管怎么抽签,最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,所以中签的可能性必然是相等的。
假如10个人抽签,只有1个奖品。
抽签时先抽和后抽中奖的几率是
通过上面的计算可知,抽签的顺序与中奖概率之间并没有关系,不管先抽还是后抽,总体中奖概率都是相等的,可见抽签十分公平。在工作和生活之中,我们还会遇到一类和抽签很像的事情,但这类问题与抽签问题并不相同。
生活中有一个需要用到概率知识的常见局面:比较少的东西要分给比较多的人,比如把3张电影票分给5个人,由于不够分,只好用抽签的形式分配。
抽签时先抽和后抽中奖的几率是一样的。抽签时无论谁抽到签都不打开,先抽和后抽的中奖概率是一样的;如果第一个人抽签后打开结果,则后面的人抽签中奖的概率与本题中的中奖概率是不同的问题。
抽签时先抽和后抽概率一样吗
抽签时先抽和后抽中签的几率是()的。
相等。均等,不管谁先抽都是公平的。索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。
于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。
祈福/恭请圣物
如部分已经请完,可根据需求推荐同款!
温馨提示:
1、本内容来源于网络,版权归原作者所有!
2、本站仅提供信息分享服务,不拥有所有权,不承担相关法律责任!
3、本内容若侵犯到你的版权利益请联系我们,会尽快给予删除处理!